일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 백준알고리즘
- CS231nSVM
- CS231nAssignment1
- MacOS
- 맥북원스토어
- CS231nAssignments
- ios원스토어
- 백준
- professor strang
- CNNarchitecture
- adversarialattackonmonoculardepthestimation
- CNN구조정리
- BOJ
- Gilbert Strang
- CS231ntwolayerneuralnet
- 선형대수학
- gpumemory
- BAEKJOON
- monoculardepthestimation
- ㅐㅕ세ㅕㅅ
- MIT
- 선대
- pycharmerror
- arm칩에안드로이드
- Linear algebra
- CS231n
- RegionProposalNetworks
- 아이폰원스토어
- Algorithm
- 맥실리콘
- Today
- Total
목록CS231nSVM (2)
개발로 하는 개발
Softmax Another popular classifier (like SVM) Generalized version of binary Logistic Regression classifier - Softmax function : - Loss function : cross-entropy function - Numerical Stability : exponential -> very large number -> normalize values - SVM vs Softmax Same score function Wx = b, different loss function. Softmax : Calculate probabilities for each classes. Easier to interpret. Softmax.p..
KNN - space inefficient : have to remember all the data in the training set - classifying is expensive : must calculate all the distances to all of the training set -> Use SVM SVM Linear Classification - Score function, Loss function 사용 : minimize the loss function with respect to the parameters of the score function. CIFAR-10 we have a training set of N = 50,000 images, each with D = 32 x 32 x ..